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ABSTRACT 

Conical steel vessels are frequently used as elevated water reservoirs supported on reinforced 
concrete towers. While design codes of practice guidelines exist for designing against hydrostatic forces, 
there are no proposed methods for handling earthquake-loads. In this study, the seismic behaviour of 
liquid-filled conical tanks is investigated using a formulation involving coupling between the finite 
element and the boundary integral methods. The steel tank is modelled using a newly developed shell 
element which includes both geometric and material non-linearities, while the hydrodynamic pressure 
resulting from the fluid-structure interaction is obtained using the boundary integral method. This 
hydrodynamic pressure leads to a fluid virtual mass which is added to the mass matrix of the structure 
to perform free vibration and non-linear dynamic analyses of the coupled fluid-structure system. The 
analysis undertaken shows that the earthquake loading, involving both vertical and horizontal 
accelerations, has a major effect on the stability of such elevated conical-shaped vessels. 

INTRODUCTION 

Conical steel tanks with cylindrical upper section components (Fig.l) are fairly widely used as 
containment vessels for elevated water tower structures. However, the current standards of practice for 
water containment structures in North America, based on the AWWA D-100 (1984) specifications, do 
not provide criteria for the seismic design of such structures. 

An extensive number of studies concerning the seismic analysis and design of liquid-filled 
cylindrical tanks can be found in the literature. The recorded performance of cylindrical tanks during 
actual earthquakes indicates a common form of buckling of the walls of the tanks near their bases, 
described as "elephant foot buckling". This localized instability is mainly due to the overturning moment 
which is exerted by the hydrodynamic pressure resulting from the horizontal component of an 
earthquake motion. Analytical studies which take into account the fluid-structure interaction and the 
flexibility of the walls of the tank have been conducted by many investigators. Tanks subjected to 
horizontal ground motion (Haroun ,1980), and those subjected to vertical acceleration have been 
considered (Haroun and Tayel, 1985). In the above studies, the boundary integral method was used to 
obtain the fluid added-mass which simulates the hydrodynamic pressure acting on the walls of the tank 
as a result of ground acceleration. 

To the best of the authors' knowledge, no attempt has been made to study the seismic response 
of liquid-filled conical tanks. As would be the case for cylindrical vessels, horizontal ground 
acceleration may be expected to cause significant overturning moment at the base of the vessel. Also, 
due to the inclination of the walls of the cone, vertical accelerations are expected to induce both axial 
and hoop stresses in the shell. Indeed, the above studies concerning seismic analysis of cylindrical tanks 
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were limited to linear elastic response, based on the fact that the resulting stresses are usually less than 
the yield stress of the material. However, for the case of a liquid-filled steel tank, the axial stresses due 
to hydrostatic pressure when added to those resulting from seismic excitation may indeed lead to 
yielding. This yielding, together with a localized large deformation near the base could cause premature 
local buckling in the bottom region of the tank. This could result in an overall instability of the 
structure. It seems prudent, therefore, to include geometric and material non-linearities when performing 
seismic analysis of such elevated vessels. The stability analysis of liquid-filled conical tanks subject to 
seismic loading presented in this study follows a comprehensive investigation of liquid-filled conical 
tanks under hydrostatic loading presented earlier (El Damatty 1995, El Damatty et al. 1994b). 

FINITE ELEMENT MODEL 

A consistent subparametric shell element, free from spurious shear modes normally associated 
with the isoparametric shell elements was developed by Koziey (1993). This element formulation was 
then extended by El Damatty (1995) to include large displacements, strain hardening plasticity and non-
linear dynamic analysis. Verification of this non-linear model included the non-linear static and dynamic 
analyses of a number of plate and shell problems (El Damatty 1995 and El Damatty et al. 1994a). In 
all of the above examples, the finite element model showed excellent performance when comparing 
results obtained with available analytical and experimental findings in the literature. 

The above extended finite element model is now used to model liquid-filled conical steel vessels 
in order to study their stability under seismic loading. The initial geometric imperfections which may 
exist in a real shell structure can be represented in the finite element model as initial strain. 

BOUNDARY INTEGRAL FORMULATION OF HYDRODYNAMIC PRESSURE 

Two components of hydrodynamic pressure develop inside a liquid-filled tank as a result of 
seismic excitation. These are the long period component (convective) due to sloshing at the liquid's free 
surface and the impulsive fluid pressure which varies in-phase with the vibration of the walls. Previous 
studies of cylindrical tanks indicate that the decoupling between the vibration of the walls and sloshing 
action is a valid assumption. The same assumption is herein employed for liquid-filled conical tanks. 
Therefore, only the impulsive hydrodynamic pressure is considered in the analysis. The fluid inside the 
tank is considered as ideal, while the base of the tank is assumed to be restricted from rocking. In view 
of the assumptions above, the hydrodynamic pressure resulting from the vibration of a flexible liquid-
filled conical vessel filled with water (see Fig.2) is governed by the following equation and boundary 
conditions: 

V 2  P d(r 3 ,z ,t) =0 inside the fluid volume 0 (1) 

aPd(r,e,z,,t) 
- pF  fi(r,0,z,t).n at the surface Sl (2) 

an 

Pa4 at the surface S3 (3) 
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Ordw 
= f31. as(t).n at the surface S2 (4) 

an 

where Pd  is the hydrodynamic pressure exerted in the tank in access of the hydrostatic pressure; 
ii(r,O,z,t) is the acceleration vector at any point in the tank's walls; n is the unit vector normal to the 
surface of the tank; pp is the fluid density and *U,(t) is the acceleration vector at the base of the vessel. 
Surfaces Si, S2 and S3  are as shown in Fig.2. 

The above set are solved using the boundary integral method. The general idea is to interpolate 
the dynamic pressure using shape functions (modes) which satisfy the partial differential equation and 
also the time independent boundary conditions. The amplitude of each mode is then obtained by 
satisfying the rest of the time dependent boundary conditions in an integral sense. By applying this 
approach, the virtual work done by the hydrodynamic pressure 8W can be expressed in the following 
manner: 

8 V1=48(41 U))7[DM]{0) (5) 

where {(5(AU)) and {U}T are the vectors which include the virtual incremental nodal displacements and 
the total nodal accelerations at time t, respectively. [DM] represents a fluid added-mass matrix which 
results from the hydrodynamic pressure, while its components include both the pressure shape functions 
and the interpolation functions of the shell element used to discretize the structure. 

The pressure shape functions, due to horizontal acceleration acting on a conical tank which is 
prevented from rocking, are given by: 
Hii(r,t),z)=/i(air)cos(cciz)cos(a) (6) 

Meanwhile, the pressure shape functions due to vertical amieration are given by: 
Hdr,z)=I0(c c r)cos(c iz). (7) 

where Wag') and le(air) are the modified Bessel's functions of the first order; ai= (2i-1)/2Th where h 
is the height of the fluid inside the tank. These shape functions are used to obtain the fluid added mass 
matrices [DM]H  and [DM]v which results from horizontal and vertical accelerations, respectively. Note 
that the above added-mass matrices can only be obtained globally and are fully populated. A complete 
derivation can be found elsewhere (El Damatty, 1995). 

ANALYSIS OF CONICAL TANKS 

Layout and Modelling 

Four liquid-filled conical steel tanks (T1 to T4) with constant thickness are considered in the 
analysis. All tanks have the bottom radius r1=3.0 m, height h=9.0 m and angle 0.„ = 45°, where 0, is 
the angle of inclination of the generator of the tank with the vertical. The thicknesses of the four tanks 
are equal to 12.0, 12.0, 13.5, and 14.0 mms, respectively. The first tank is assumed to have initial 
geometric imperfections in the form of a sine wave of wave length equal to the buckling wave length 
of the perfect structure and an amplitude equal to the tank thickness. The other three tanks are assumed 
to have a perfect shape. Note that the upper cylindrical segment is omitted in these analyses. This is 
believed not to affect the results significantly since it is remote from the highly stressed region located 
at the bottom. The tanks are assumed to rest on four rigid frames. The stiffnesses of these frames are 
modeled using both horizontal and vertical springs. Based on a preliminary analysis, the springs 
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simulating the frames, which have adequate cross sections to withstand static and seismic loading, were 
found to be have stiffnesses in the horizontal and vertical directions as: kb= 0.708*109  N/m, 
2.33*1010  N/m, respectively. 

Static Analyses 

Elastic stability analyses (including geometric non-linearities) are first performed for three tanks 
(T2 to T4) to obtain the buckling wave length due to hydrostatic loading. The buckling displacements 
are found to be localized at the bottom of the structure. Inelastic stability analysis is then performed for 
the four tanks filled with water to determine a critical load factor pc,. for each tank. This load factor pc, 
is such that the hydrostatic pressure can be multiplied by any factor up to pa  prior to the tank becoming 
unsafe. Hence, per  is a measure of the factor of safety for the tank under static condition when filled 
with water. The load factors obtained from the finite element analysis are given in Table 1. 

Free Vibration Analyses 

The fluid added masses [DM]x  and [DM], are calculated following the procedure outlined above. 
These are simultaneously added to the mass matrix of each tank to obtain the effective mass matrices 
due to horizontal and vertical excitations. These are incorporated with the linear stiffness matrix of the 
structure into an eigen value analysis to obtain the natural frequencies and the corresponding mode 
shapes. The frequencies of the first four modes of vibration due to each type of excitation acting on the 
tank T2 are given in Table 2. 

Time History Analyses 

Non-linear time history analyses of the four conical shaped reservoirs filled with water are 
performed using the horizontal and vertical components of the 1971 San Fernando earthquake as the 
input ground motion. The reason for choosing this particular record is that its dominant frequencies 
contain the fundamental frequencies of vibration of the considered tanks which are given in Table.2. 
The two components of the ari-Pleration records of the San Fernando earthquake are scaled down such 
that the maximum velocity of the input record is equal to the zonal velocity of Quebec city as specified 
in the NBCC (1990). This leads to a maximum horizontal and vertical acceleration equal to 0.28 g and 
0.167 g, respectively, where g is the acceleration due to gravity. Only the strongest six seconds of 
record are used in the analyses because of the very long computer time associated with this type of time 
history analysis problem. The scaled horizontal and vertical accelerations of the earthquake are shown 
in Figs.3 and 4. Due to symmetry about the direction of the horizontal excitation, only one half of the 
tanks is modeled in the analysis. 

The fluid added masses [DM]H  and P/41%, as well as the mass matrix of the structure are added 
together to obtain the effective mass matrix [W]. The non-linear stiffness matrix of the structure 
includes the effect of both the geometric and the material non-linearities. A 2% viscous damping value 
for the liquid-shell system is assumed in the analysis. The time history analysis is achieved using the 
Newmark method for time integration and the Newton-Raphson method for iteration within time 
increments equal to 0.02 sec. 

The results of the dynamic analyses are presented at different locations on the tank 
circumference. 0=0° and 0=180° are located on the axis of horizontal excitation, while 0=90° is located 
in a direction perpendicular to the axis of horizontal excitation. The transverse meridional displacements 
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along the generator (00=0) of tank Tl , which failed during the time history of the earthquake, are 
displayed in Fig.5. In this figure, the dotted plot represents the displacement shape resulting from the 
hydrostatic pressure, while the solid line shows the displacements just prior to dynamic instability. From 
the plots it can be observed that the dynamic buckling which is localized at the bottom of the tank has 
the same pattern as that of the static displacements. Also to be noted, are the large horizontal and 
vertical movements in the upper region of the tank due to the seismic motion. In Fig.6, the same 
displacement plots are plotted along the generator (0=180°) of the tank. This latter figure shows no 
evidence of buckling along that generator. This means that the buckling is localized near the base and 
is confined to the region subjected to high compressive axial stresses resulting from the overturning 
moment. The plots of the displacement at different locations for the tank T4, which survived the 
simulated earthquake without any inelastic behaviour, shows no out of roundness effect at any section 
of the tank. The relative displacements along the x-axis (axis of horizontal excitation) at the top section 
of the tank is shown in Fig.7. Meanwhile, the relative vertical displacements at 0=0° and 0=90° are 
plotted in Figs. 8 and 9. It is important to point out that the response at 0=90° is only due to vertical 
acceleration, while the response at 0=0° results from both horizontal and vertical accelerations. The 
meridional stresses in the bottom section of the tank are plotted for 0=0° and 0=90° in Figs.10 and 11, 
respectively. Similar to vertical displacements, the results for stresses at 0=90° are only due to vertical 
accelerations, while those at 0=0° are due to both the vertical and horizontal components. Note that in 
all of the above plots, the response at t=0 corresponds to the effect of the hydrostatic pressure before 
applying the seismic loading. From the plots of the stresses, it can be observed that the maximum 
stresses induced at the bottom by the vertical arreleration are almost 32% of the maximum stresses 
induced in the same section by the horizontal acceleration. It can also be observed from the plots that 
the stresses in the critical region due to the seismic motion are larger than those resulting from the 
hydrostatic pressure. The results from the time history analysis are summarized in Table 1. The last 
column denotes the most critical state experienced by the structure during the six seconds of record. The 
term "safe" denotes that the tank has survived this earthquake motion, while the tanks which have 
suffered from dynamic instability during the six seconds are described by the term "failed". In the same 
column, tanks which have a complete elastic response during the record are described by "elastic", 
while the term "plastification" denotes the tanks which have an inelastic response during the seismic 
motion. To obtain a fully elastic response and assure the safety of the stucture from dynamic instability, 
the results of the dynamic analyses show that under a seismic excitation having frequency content of 
the fundamental modes and a maximum acceleration of 0.28 g, a load factor under static conditions of 
2.8 has to be provided. Meanwhile, a load factor of 2.65 leads to a safe inelastic response of the tall 
tank under the same excitation. 

CONCLUSIONS 

From the stability analyses of liquid-filled elevated conical tanks subjected to seismic loading 
undertaken in this study, the following conclusions can be drawn: 
1) Tanks which apparently have a high static load factor may exhibit inelastic behaviour during an 

earthquake record, followed by inelastic localized buckling near the base of the tank. Therefore, 
a proper modelling procedure along with time dependent analysis must be followed in order to 
design such tanks safely. The model developed here is meant to satisfy such a need. 

2) The vertical component of ground acceleration does contribute significantly to the dynamic 
instability of liquid-filled conical vessels and can not be ignored in a seismic analysis of such 
a structure. 
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Table 1 Results of the Time History Analyses for Conical Tanks. 

Tank pa  Results Description Tank IN= Results Description 

T1 1.4 Failed (Plastic) T3 2.65 Safe (Plastic) 

T2 2.25 Failed (Plastic) T4 2.80 Safe (Elastic) 

Table 2 Natural Frequencies (cps) of Tank 77. 

Type of Excitation Mode 1 Mode 2 Mode 3 Mode 4 

Horizontal 2.51 3.54 6.67 12.04 

Vertical 7.44 14.95 19.06 24.46 

Fig.1 Cross Sectional Elevation of Elevated Conical Tanks. Fig.2 Coordinate System. 
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Fig.3 Scaled Horizontal Component of the Ground Acceleration. 
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Time History of the Relative Displacement Along the X—Axis At Top of T4. 
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Fig.8 Time History of the Relative Vertical Displacement At Top of T4 (0=0 
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Fig.9 Time History of the Relative Vertical Displacement At Top of T4 (8=90). 

Fig.10 Time History of the Meridional Strsses at Bottom of T4 (0=0). 
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Fig.11 Time History of the Meridional Stresses at Bottom of T4 (6=90). 
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